Following last week's impulse, here is a tutorial about the subtleties of multiscale particle localisation from confocal 3D images.
For reference, this has been published as
- A novel particle tracking method with individual particle size measurement and its application to ordering in glassy hard sphere colloids.
- Leocmach, M., & Tanaka, H.
- Soft Matter (2013), 9, 1447–1457.
- doi:10.1039/c2sm27107a
- ArXiV
Particle localisation in a confocal image¶
First, import necessary library to load and display images
import numpy as np
from scipy.ndimage import gaussian_filter
from matplotlib import pyplot as plt
from colloids import track
%matplotlib inline
We also need to define functions to quickly display tracking results.
def draw_circles(xs, ys, rs, **kwargs):
for x,y,r in zip(xs,ys,rs):
circle = plt.Circle((x,y), radius=r, **kwargs)
plt.gca().add_patch(circle)
def display_cuts(imf, centers, X=30, Y=25, Z=30):
"""Draw three orthogonal cuts with corresponding centers"""
plt.subplot(1,3,1);
draw_circles(centers[:,0], centers[:,1], centers[:,-2], facecolor='none', edgecolor='g')
plt.imshow(imf[Z], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,2);
draw_circles(centers[:,0], centers[:,2], centers[:,-2], facecolor='none', edgecolor='g')
plt.imshow(imf[:,Y], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,3);
draw_circles(centers[:,1], centers[:,2], centers[:,-2], facecolor='none', edgecolor='g')
plt.imshow(imf[:,:,X], 'hot',vmin=0,vmax=255);
Raw confocal image¶
Load the test data, which is only a detail of a full 3D stack. Display different cuts.
Note that raw confocal images are heavily distorted in the z direction. We actually have 4 particles in the image: two small on top of each other, one on the side and a slightly larger below and on the side.
imf = np.fromfile('../../../multiscale/test_input/Z_elong.raw', dtype=np.uint8).reshape((55,50,50))
plt.subplot(1,3,1).imshow(imf[30], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,2).imshow(imf[:,25], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,3).imshow(imf[:,:,30], 'hot',vmin=0,vmax=255);
Create a finder object of the same shape as the image. Seamlessly work with 3D images.
finder = track.MultiscaleBlobFinder(imf.shape, Octave0=False, nbOctaves=4)
Feed the image in the tracker with default tracking parameters. The output has four columns : (x,y,z,r,i) where r is a first approximation of the radius of the particle (see below) and i is a measure of the brightness of the particle.
centers = finder(imf)
print centers.shape
print "smallest particle detected has a radius of %g px"%(centers[:,-2].min())
display_cuts(imf, centers)
This is a pretty bad job. Only two particle detected correctly. The top and side small particles are not detected.
Let us try not to remove overlapping.
centers = finder(imf, removeOverlap=False)
print centers.shape
print "smallest particle detected has a radius of %g px"%(centers[:,-2].min())
display_cuts(imf, centers)
Now we have all the particles.
We have two effects at play here that fool the overlap removal: - The radii guessed by the algorithm are too large. - The particles aligned along z are localised too close together.
Both effects are due to the elongation in z.
Simple deconvolution of a confocal image¶
The image y acquired by a microscope can be expressed as
y=x⋆h+ϵ,
where ⋆ is the convolution operator, x is the perfect image, h is the point spread function (PSF) of the microscope and ϵ is the noise independent of both x and h. The process of estimating x from y and some theoretical or measured expression of h is called deconvolution. Deconvolution in the presence of noise is a difficult problem. Hopefully here we do not need to reconstruct the original image, but only our first Gaussian blurred version of it. Indeed, after a reasonable amount of blur in three dimensions, the noise can be neglected and we thus obtain:
y0≈G0⋆h,
or in Fourier space
F[y0]=F[G0]×F[h].
Once F[h] is known the deconvolution reduces to a simple division in Fourier space.
Measuring the kernel¶
F[h] should be measured in an isotropic system and in the same conditions (magnification, number of pixels, indices of refraction, etc.) as the experiment of interest.
Since a 3D image large enough to be isotropic is too big to share in an example, I just use the image of interest. Don't do this at home.
imiso = np.fromfile('../../../multiscale/test_input/Z_elong.raw', dtype=np.uint8).reshape((55,50,50))
kernel = track.get_deconv_kernel(imiso)
plt.plot(kernel);
The kernel
variable here is actually 1/F[h]
Kernel test¶
What not to do: deconvolve the unblurred image.
imd = track.deconvolve(imf, kernel)
plt.subplot(1,3,1).imshow(imd[30], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,2).imshow(imd[:,25], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,3).imshow(imd[:,:,30], 'hot',vmin=0,vmax=255);
Noisy isn't it? Yet we have saturated the color scale between 0 and 255, otherwise artifacts would be even more apparent.
What the program will actually do: deconvolved the blurred image.
imb = gaussian_filter(imf.astype(float), 1.6)
plt.subplot(1,3,1).imshow(imb[30], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,2).imshow(imb[:,25], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,3).imshow(imb[:,:,30], 'hot',vmin=0,vmax=255);
imbd = track.deconvolve(imb, kernel)
plt.subplot(1,3,1).imshow(imbd[30], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,2).imshow(imbd[:,25], 'hot',vmin=0,vmax=255);
plt.subplot(1,3,3).imshow(imbd[:,:,30], 'hot',vmin=0,vmax=255);
The way the noise is amplified by deconvolution is obvious when we compare the histograms of the 4 versions of the image.
for i, (l, im) in enumerate(zip(['raw', 'blurred', 'deconv', 'blur deconv'], [imf, imb, imd, imbd])):
plt.plot(
np.arange(-129,363,8),
np.histogram(im, np.arange(-129,371,8))[0]*10**i,
label=l+' (%d,%d)'%(im.min(), im.max()));
plt.xlim(-130,360);
plt.yscale('log');
plt.legend(loc='upper right');
Obviously negative values should be discarded, and will be discarded by the algorithm.
Localisation using deconvolved image¶
Not removing the overlaping particles, we use the deconvolution kernel.
reload(track)
centers = finder(imf, removeOverlap=False, deconvKernel=kernel)
print centers.shape
print "smallest particle detected has a radius of %g px"%(centers[:,-2].min())
display_cuts(imf, centers)
All particles are found and actually they are not overlaping. However we got a spurious detection, probably some noise that got amplified by the deconvolution. It is easily removed by a threshold in intensity.
print centers
centers = centers[centers[:,-1]<-1]
display_cuts(imf, centers)
We can also display the results with respect to the blurred and deconvolved version of the image that we can find by introspection.
display_cuts(finder.octaves[1].layersG[0], centers)
From scales to sizes¶
This is pretty much like in 2D.
from colloids.particles import get_bonds
s = track.radius2sigma(centers[:,-2], dim=3)
bonds, dists = get_bonds(positions=centers[:,:-2], radii=centers[:,-2], maxdist=3.0)
brights1 = track.solve_intensities(s, bonds, dists, centers[:,-1])
radii1 = track.global_rescale_intensity(s, bonds, dists, brights1)
centers2 = np.copy(centers)
centers2[:,-2] = radii1
display_cuts(imf, centers2)